Find a power series representation for the function and determine the interval of convergence.

1) $f(x)=\frac{1}{1+x}$
2) $f(x)=\frac{3}{1-x^{4}}$
3) $f(x)=\frac{1}{1+9 x^{2}}$
4) $f(x)=\frac{1}{x-5}$
5) $f(x)=\frac{x}{4 x+1}$
6) $f(x)=\frac{x}{9+x^{2}}$

Express the function as the sum of a power series by first using partial fractions. Find the interval of convergence.
7) $f(x)=\frac{3}{x^{2}+x-2}$
8) For the function: $f(x)=\frac{1}{(1+x)^{2}}$
a) Use differentiation to find a power series representation for the function and find the radius of convergence.
b) Use part a) to find a power series for: $f(x)=\frac{1}{(1+x)^{3}}$
c) Use part b) to find a power series for: $f(x)=\frac{x^{2}}{(1+x)^{3}}$

Find a power series representation for the function and determine the radius of convergence.
9) $f(x)=\ln (5-x)$
10) $f(x)=\frac{x^{2}}{(1-2 x)^{2}}$
11) $f(x)=\arctan (x / 3)$

Evaluate the indefinite integral as a power series. What is the radius of convergence?
12) $\int \frac{t}{1-t^{8}} d t$
13) $\int \frac{x-\tan ^{-1} x}{x^{3}} d x$
14) Show that the function $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ is a solution of the differential equation $f^{\prime \prime}(x)+f(x)=0$.
15) Let $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ find the intervals of convergence for f, f^{\prime}, and $f^{\prime \prime}$
16) Given the geometric series $\sum_{n=0}^{\infty} x^{n}$ find the following:
a) The sum of the series:

$$
\sum_{n=1}^{\infty} n x^{n-1} \quad|x|<1
$$

b) The sum of each of the following series:

$$
\sum_{n=1}^{\infty} n x^{n} \quad|x|<1 \quad \sum_{n=1}^{\infty} \frac{n}{2^{n}}
$$

c) The sum of each of the following series

$$
\sum_{n=2}^{\infty} n(n-1) x^{n} \quad|x|<1 \quad \sum_{n=2}^{\infty} \frac{n^{2}-n}{2^{n}} \quad \sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}
$$

17) Use the power series for $\tan ^{-1} x$ to prove the following expression for π as the sum of an infinite series:

$$
\pi=2 \sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1) 3^{n}}
$$

